Increase solar cell efficiency for hybrid photovoltaic thermal-   thermoelectric (PVT-TE) systems. Review study

Authors

  • naseer azeez Middle Euphrates University, Al-Musayyab Technical College Author
  • Ali Najah Kadhim Author

DOI:

https://doi.org/10.52262/pebnvb74

Abstract

 Conventional energy sources lead to pollution and global warming, driving the need for renewable energy technologies.  This review study focuses on the integration of photovoltaic (PV), thermal (T) and thermoelectric (TE) technologies to enhance the overall efficiency of solar energy conversion systems. The primary objectives of the system design are to identify suitable materials and components to improve heat conversion efficiency, address thermal management issues that limit the performance of conventional PV systems, and explore the synergistic benefits of combining these technologies. Overall, this article summarizes a series of optimization strategies for photovoltic (pv) ,thermal (t) thermoelectric materials, providing valuable references and inspiration for researchers in the field, with the aim of further advancing the science of  materials  

References

A. Al Khabyah, A. Almarashi, H. A. Z. AL-bonsrulah, and G. A. Ahmed Alashaari, ‘Simulation of thermoelectric-photovoltaic system integrated with various shapes of cooling ducts filled with nanomaterial’, Case Stud. Therm. Eng., vol. 63, p. 105301, Nov. 2024, doi: 10.1016/j.csite.2024.105301.

M. Beigzadeh, F. Pourfayaz, and S. M. Pourkiaei, ‘Modeling Heat and Power Generation for Green Buildings based on Solid Oxide Fuel Cells and Renewable Fuels (Biogas)’, Renew. Energy Res. Appl., vol. 1, no. 1, Jan. 2020, doi: 10.22044/rera.2020.8985.1010.

M. R. Amirrud and M. Shahin, ‘Sensitivity and Uncertainty Analysis of Economic Feasibility of Establishing Wind Power Plant in Kerman, Iran’, Renew. Energy Res. Appl., vol. 1, no. 2, Jul. 2020, doi: 10.22044/rera.2020.9681.1035.

N. Mishra, A. Jain, A. Nair, B. Khanna, and S. Mitra, ‘Experimental Investigation on a Ducted Savonius Vertical Axis Wind Turbine and its Performance Comparison with and without Endplates’, Renew. Energy Res. Appl., vol. 1, no. 1, Nov. 2019, doi: 10.22044/rera.2019.8533.1005.

D. Das, P. Kalita, and O. Roy, ‘Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development’, Renew. Sustain. Energy Rev., vol. 84, pp. 111–130, Mar. 2018, doi: 10.1016/j.rser.2018.01.002.

C. Habchi, C. Bou-Mosleh, and M. Khaled, ‘An experimental analysis of a hybrid photovoltaic thermal system through parallel water pipe integration’, Int. J. Thermofluids, vol. 21, p. 100538, Feb. 2024, doi: 10.1016/j.ijft.2023.100538.

A. Kumar Behura, A. Kumar, D. Kumar Rajak, C. I. Pruncu, and L. Lamberti, ‘Towards better performances for a novel rooftop solar PV system’, Sol. Energy, vol. 216, pp. 518–529, Mar. 2021, doi: 10.1016/j.solener.2021.01.045.

M. Lak Kamari, H. Isvand, and M. Alhuyi Nazari, ‘Applications of multi-Criteria Decision-Making (MCDM) Methods in Renewable Energy Development: A Review’, Renew. Energy Res. Appl., vol. 1, no. 1, Jan. 2020, doi: 10.22044/rera.2020.8541.1006.

H. Berahmandpour, Sh. Kouhsari, and H. Rastegar, ‘A New Method for Real Time Economic Dispatch Solution Including Wind Farms’, Renew. Energy Res. Appl., vol. 1, no. 2, Jul. 2020, doi: 10.22044/rera.2020.9070.1013.

S. K. Sahoo, ‘Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review’, Renew. Sustain. Energy Rev., vol. 59, pp. 927–939, Jun. 2016, doi: 10.1016/j.rser.2016.01.049.

J. Gong, C. Li, and M. R. Wasielewski, ‘Advances in solar energy conversion’, Chem. Soc. Rev., vol. 48, no. 7, pp. 1862–1864, 2019, doi: 10.1039/C9CS90020A.

L. Grosu, A. Mathieu, P. Rochelle, M. Feidt, M. H. Ahmadi, and M. Sadeghzadeh, ‘Steady state operation exergy‐based optimization for solar thermal collectors’, Environ. Prog. Sustain. Energy, vol. 39, no. 3, p. e13359, May 2020, doi: 10.1002/ep.13359.

M. Mussard and M. Amara, ‘Performance of solar photovoltaic modules under arid climatic conditions: A review’, Sol. Energy, vol. 174, pp. 409–421, Nov. 2018, doi: 10.1016/j.solener.2018.08.071.

M. M. Farag, A.-K. Hamid, M. N. AlMallahi, and M. Elgendi, ‘Towards highly efficient solar photovoltaic thermal cooling by waste heat utilization: A review’, Energy Convers. Manag. X, vol. 23, p. 100671, Jul. 2024, doi: 10.1016/j.ecmx.2024.100671.

I. O. Harmailil, S. M. Sultan, C. P. Tso, A. Fudholi, M. Mohammad, and A. Ibrahim, ‘A review on recent photovoltaic module cooling techniques: Types and assessment methods’, Results Eng., vol. 22, p. 102225, Jun. 2024, doi: 10.1016/j.rineng.2024.102225.

W. L. Schram and E. Shirazi, ‘PV on façades: A financial, technical and environmental assessment’, Energy Build., vol. 328, p. 115010, Feb. 2025, doi: 10.1016/j.enbuild.2024.115010.

A. Kumar Behura, A. Kumar, D. Kumar Rajak, C. I. Pruncu, and L. Lamberti, ‘Towards better performances for a novel rooftop solar PV system’, Sol. Energy, vol. 216, pp. 518–529, Mar. 2021, doi: 10.1016/j.solener.2021.01.045.

A. M. A. Alshibil, P. Vig, and I. Farkas, ‘Performance enhancement attempts on the photovoltaic/thermal module and the sustainability achievements: A review’, Energy, vol. 304, p. 132099, Sep. 2024, doi: 10.1016/j.energy.2024.132099.

D. Das, P. Kalita, and O. Roy, ‘Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development’, Renew. Sustain. Energy Rev., vol. 84, pp. 111–130, Mar. 2018, doi: 10.1016/j.rser.2018.01.002.

C. Habchi, C. Bou-Mosleh, and M. Khaled, ‘An experimental analysis of a hybrid photovoltaic thermal system through parallel water pipe integration’, Int. J. Thermofluids, vol. 21, p. 100538, Feb. 2024, doi: 10.1016/j.ijft.2023.100538.

S. P. Aly, S. Ahzi, and N. Barth, ‘Effect of physical and environmental factors on the performance of a photovoltaic panel’, Sol. Energy Mater. Sol. Cells, vol. 200, p. 109948, Sep. 2019, doi: 10.1016/j.solmat.2019.109948.

W. Charfi, M. Chaabane, H. Mhiri, and P. Bournot, ‘Performance evaluation of a solar photovoltaic system’, Energy Rep., vol. 4, pp. 400–406, Nov. 2018, doi: 10.1016/j.egyr.2018.06.004.

R. Madurai Elavarasan et al., ‘Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review’, Energy Convers. Manag., vol. 255, p. 115278, Mar. 2022, doi: 10.1016/j.enconman.2022.115278.

N. S. Nazri et al., ‘Bridging the gap: A comparative analysis of indoor and outdoor performance for photovoltaic-thermal-thermoelectric hybrid systems’, Case Stud. Therm. Eng., vol. 64, p. 105404, Dec. 2024, doi: 10.1016/j.csite.2024.105404.

H. Jouhara et al., ‘Thermoelectric generator (TEG) technologies and applications’, Int. J. Thermofluids, vol. 9, p. 100063, Feb. 2021, doi: 10.1016/j.ijft.2021.100063.

P. Fernández-Yáñez, V. Romero, O. Armas, and G. Cerretti, ‘Thermal management of thermoelectric generators for waste energy recovery’, Appl. Therm. Eng., vol. 196, p. 117291, Sep. 2021, doi: 10.1016/j.applthermaleng.2021.117291.

H. A. Hussein, Z. Wang, W. K. Alani, J. Zheng, and M. A. Fayad, ‘A novel experimental design for free energy from the heat-gaining panel using multi-thermoelectric generators (TEGs) panel’, Case Stud. Therm. Eng., vol. 50, p. 103431, Oct. 2023, doi: 10.1016/j.csite.2023.103431.

A. H. A. Al‐Waeli, H. A. Kazem, M. T. Chaichan, and K. Sopian, ‘A review of photovoltaic thermal systems: Achievements and applications’, Int. J. Energy Res., vol. 45, no. 2, pp. 1269–1308, Feb. 2021, doi: 10.1002/er.5872.

M. A. Akrouch, K. Chahine, J. Faraj, F. Hachem, C. Castelain, and M. Khaled, ‘Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification’, Energy Built Environ., vol. 6, no. 2, pp. 248–276, Apr. 2025, doi: 10.1016/j.enbenv.2023.11.002.

M. Gopinath and R. Marimuthu, ‘Experimental study of photovoltaic-thermoelectric generator with graphite sheet’, Case Stud. Therm. Eng., vol. 54, p. 103982, Feb. 2024, doi: 10.1016/j.csite.2024.103982.

C. Zhang, C. Shen, S. Wei, Y. Wang, G. Lv, and C. Sun, ‘A Review on Recent Development of Cooling Technologies for Photovoltaic Modules’, J. Therm. Sci., vol. 29, no. 6, pp. 1410–1430, Nov. 2020, doi: 10.1007/s11630-020-1350-y.

J. Darkwa, J. Calautit, D. Du, and G. Kokogianakis, ‘A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells’, Appl. Energy, vol. 248, pp. 688–701, Aug. 2019, doi: 10.1016/j.apenergy.2019.04.147.

A. M. Alajlan, S. Dang, and Q. Gan, ‘Enhanced nighttime power generation and photovoltaic cooling in photovoltaic-thermoelectric hybrid systems’, Energy Convers. Manag. X, vol. 22, p. 100580, Apr. 2024, doi: 10.1016/j.ecmx.2024.100580.

M. Samykano, ‘Hybrid Photovoltaic Thermal Systems: Present and Future Feasibilities for Industrial and Building Applications’, Buildings, vol. 13, no. 8, p. 1950, Jul. 2023, doi: 10.3390/buildings13081950.

A. Ahmed, H. Baig, S. Sundaram, and T. K. Mallick, ‘Use of Nanofluids in Solar PV/Thermal Systems’, Int. J. Photoenergy, vol. 2019, pp. 1–17, Jun. 2019, doi: 10.1155/2019/8039129.

M. A. I. Khan et al., ‘An Experimental and Comparative Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System’, Front. Energy Res., vol. 9, p. 722514, Sep. 2021, doi: 10.3389/fenrg.2021.722514.

H. Panchal et al., ‘Productivity enhancement of solar still with thermoelectric modules from groundwater to produce potable water: A review’, Groundw. Sustain. Dev., vol. 11, p. 100429, Oct. 2020, doi: 10.1016/j.gsd.2020.100429.

F. A. Farret and E. A. Vieira, ‘Recovery of Photovoltaic Module Heat Using Thermoelectric Effect’, in Renewable Energy - Resources, Challenges and Applications, M. Al Qubeissi, A. El-kharouf, and H. Serhad Soyhan, Eds., IntechOpen, 2020. doi: 10.5772/intechopen.87989.

J. Zhang, H. Zhai, Z. Wu, Y. Wang, and H. Xie, ‘Experimental investigation of novel integrated photovoltaic-thermoelectric hybrid devices with enhanced performance’, Sol. Energy Mater. Sol. Cells, vol. 215, p. 110666, Sep. 2020, doi: 10.1016/j.solmat.2020.110666.

B. Yang, R. Xie, J. Duan, and J. Wang, ‘State-of-the-art review of MPPT techniques for hybrid PV-TEG systems: Modeling, methodologies, and perspectives’, Glob. Energy Interconnect., vol. 6, no. 5, pp. 567–591, Oct. 2023, doi: 10.1016/j.gloei.2023.10.005.

M. A. I. Khan et al., ‘An Experimental and Comparative Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System’, Front. Energy Res., vol. 9, p. 722514, Sep. 2021, doi: 10.3389/fenrg.2021.722514.

A. K. Tiwari, K. Chatterjee, S. Agrawal, and G. K. Singh, ‘A comprehensive review of photovoltaic-thermal (PVT) technology: Performance evaluation and contemporary development’, Energy Rep., vol. 10, pp. 2655–2679, Nov. 2023, doi: 10.1016/j.egyr.2023.09.043.

C. Beldjani, N. Belghar, K. Aoues, M. S. M. Saleh, Y. Boutera, and M. A. Kethiri, ‘Efficiency improvement of air-cooled photovoltaic modules utilizing copper heat dissipators’, Desalination Water Treat., vol. 279, pp. 140–146, Dec. 2022, doi: 10.5004/dwt.2022.29099.

G. Aspetakis, C. Wang, and Q. Wang, ‘Enhancing Air-Based PVT Performance: A numerical and experimental assessment of V-Baffle designs’, Appl. Therm. Eng., vol. 262, p. 125175, Mar. 2025, doi: 10.1016/j.applthermaleng.2024.125175.

M. Y. Zulakmal, A. Fudholi, N. S. Rukman, S. Mat, H. Y. Chan, and K. Sopian, ‘Solar photovoltaic/thermal-thermoelectric generator performance review’, IOP Conf. Ser. Earth Environ. Sci., vol. 268, no. 1, p. 012120, Jun. 2019, doi: 10.1088/1755-1315/268/1/012120.

S. Sripadmanabhan Indira et al., ‘A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system’, Sol. Energy, vol. 201, pp. 122–148, May 2020, doi: 10.1016/j.solener.2020.02.090.

C. Babu and P. Ponnambalam, ‘The role of thermoelectric generators in the hybrid PV/T systems: A review’, Energy Convers. Manag., vol. 151, pp. 368–385, Nov. 2017, doi: 10.1016/j.enconman.2017.08.060.

D. T. Cotfas, P. A. Cotfas, D. Ciobanu, and O. M. Machidon, ‘Characterization of Photovoltaic–Thermoelectric–Solar Collector Hybrid Systems in Natural Sunlight Conditions’, J. Energy Eng., vol. 143, no. 6, p. 04017055, Dec. 2017, doi: 10.1061/(ASCE)EY.1943-7897.0000488.

W. K. Hussam, H. J. Salem, A. M. Redha, A. M. Khlefat, and F. Al Khatib, ‘Experimental and numerical investigation on a hybrid solar chimney-photovoltaic system for power generation in Kuwait’, Energy Convers. Manag. X, vol. 15, p. 100249, Aug. 2022, doi: 10.1016/j.ecmx.2022.100249.

G. Asefi, A. Habibollahzade, T. Ma, E. Houshfar, and R. Wang, ‘Thermal management of building-integrated photovoltaic/thermal systems: A comprehensive review’, Sol. Energy, vol. 216, pp. 188–210, Mar. 2021, doi: 10.1016/j.solener.2021.01.005.

N. A. S. Elminshawy, A. M. I. Mohamed, K. Morad, Y. Elhenawy, and A. A. Alrobaian, ‘Performance of PV panel coupled with geothermal air cooling system subjected to hot climatic’, Appl. Therm. Eng., vol. 148, pp. 1–9, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.027.

K.-T. Park et al., ‘Lossless hybridization between photovoltaic and thermoelectric devices’, Sci. Rep., vol. 3, no. 1, p. 2123, Jul. 2013, doi: 10.1038/srep02123.

C. D’Alessandro et al., ‘Performance analysis of evacuated solar thermal panels with an infrared mirror’, Appl. Energy, vol. 288, p. 116603, Apr. 2021, doi: 10.1016/j.apenergy.2021.116603.

M. Lämmle, C. Thoma, and M. Hermann, ‘A PVT Collector Concept with Variable Film Insulation and Low-emissivity Coating’, Energy Procedia, vol. 91, pp. 72–77, Jun. 2016, doi: 10.1016/j.egypro.2016.06.174.

Z. Fu et al., ‘Experimental investigation on the enhanced performance of a solar PVT system using micro-encapsulated PCMs’, Energy, vol. 228, p. 120509, Aug. 2021, doi: 10.1016/j.energy.2021.120509.

H. A. Mahmood Alsalame, J. H. Lee, and G. H. Lee, ‘Performance Evaluation of a Photovoltaic Thermal (PVT) System Using Nanofluids’, Energies, vol. 14, no. 2, p. 301, Jan. 2021, doi: 10.3390/en14020301.

M. Hissouf, M. Feddaoui, M. Najim, and A. Charef, ‘Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids’, Sol. Energy, vol. 199, pp. 115–127, Mar. 2020, doi: 10.1016/j.solener.2020.01.083.

Y. Zeng, D. Wu, X. Cao, W. Zhou, L. Tang, and K. Chen, ‘Nanoscale Organic Thermoelectric Materials: Measurement, Theoretical Models, and Optimization Strategies’, Adv. Funct. Mater., vol. 30, no. 8, p. 1903873, Feb. 2020, doi: 10.1002/adfm.201903873.

S. Kumar, D. Chaudhary, P. Kumar Dhawan, R. R. Yadav, and N. Khare, ‘Bi2Te3-MWCNT nanocomposite: An efficient thermoelectric material’, Ceram. Int., vol. 43, no. 17, pp. 14976–14982, Dec. 2017, doi: 10.1016/j.ceramint.2017.08.017.

M. Lämmle, T. Kroyer, S. Fortuin, M. Wiese, and M. Hermann, ‘Development and modelling of highly-efficient PVT collectors with low-emissivity coatings’, Sol. Energy, vol. 130, pp. 161–173, Jun. 2016, doi: 10.1016/j.solener.2016.02.007.

K. Xu, M. Du, L. Hao, J. Mi, Q. Yu, and S. Li, ‘A review of high-temperature selective absorbing coatings for solar thermal applications’, J. Materiomics, vol. 6, no. 1, pp. 167–182, Mar. 2020, doi: 10.1016/j.jmat.2019.12.012.

R. Senthil, K. Kishore Kumar, K. Rohan Rajendra, and A. Juneja, ‘Enhancement of absorptance of absorber surfaces of a flat plate solar collector using black coating with graphene’, Energy Sources Part Recovery Util. Environ. Eff., vol. 43, no. 20, pp. 2595–2608, Oct. 2021, doi: 10.1080/15567036.2020.1826016.

L. Das, K. Habib, R. Saidur, N. Aslfattahi, S. M. Yahya, and F. Rubbi, ‘Improved Thermophysical Properties and Energy Efficiency of Aqueous Ionic Liquid/MXene Nanofluid in a Hybrid PV/T Solar System’, Nanomaterials, vol. 10, no. 7, p. 1372, Jul. 2020, doi: 10.3390/nano10071372.

P. Dehury, U. Mahanta, and T. Banerjee, ‘Comprehensive Assessment on the Use of Boron Nitride-Based Nanofluids Comprising Eutectic Mixtures of Diphenyl Ether and Menthol for Enhanced Thermal Media’, ACS Sustain. Chem. Eng., vol. 8, no. 38, pp. 14595–14604, Sep. 2020, doi: 10.1021/acssuschemeng.0c05648.

V. S. Chara-Dackou et al., ‘Sensitivity analysis of the thermal performance of a parabolic trough concentrator using Al2O3 and SiO2/Vegetable oil as heat transfer fluid’, Heliyon, vol. 10, no. 2, p. e23978, Jan. 2024, doi: 10.1016/j.heliyon.2024.e23978.

H. Adun et al., ‘Multi-objective optimization and energy/exergy analysis of a ternary nanofluid based parabolic trough solar collector integrated with kalina cycle’, Sol. Energy Mater. Sol. Cells, vol. 231, p. 111322, Oct. 2021, doi: 10.1016/j.solmat.2021.111322.

A. Naghdbishi, M. E. Yazdi, and G. Akbari, ‘Experimental investigation of the effect of multi-wall carbon nanotube – Water/glycol based nanofluids on a PVT system integrated with PCM-covered collector’, Appl. Therm. Eng., vol. 178, p. 115556, Sep. 2020, doi: 10.1016/j.applthermaleng.2020.115556.

Sh. Ebrazeh and M. Sheikholeslami, ‘Applications of nanomaterial for parabolic trough collector’, Powder Technol., vol. 375, pp. 472–492, Sep. 2020, doi: 10.1016/j.powtec.2020.08.005.

Fitriani et al., ‘A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery’, Renew. Sustain. Energy Rev., vol. 64, pp. 635–659, Oct. 2016, doi: 10.1016/j.rser.2016.06.035.

S. Twaha, J. Zhu, Y. Yan, and B. Li, ‘A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement’, Renew. Sustain. Energy Rev., vol. 65, pp. 698–726, Nov. 2016, doi: 10.1016/j.rser.2016.07.034.

S. Lv, M. Liu, W. He, X. Li, W. Gong, and S. Shen, ‘Study of thermal insulation materials influence on the performance of thermoelectric generators by creating a significant effective temperature difference’, Energy Convers. Manag., vol. 207, p. 112516, Mar. 2020, doi: 10.1016/j.enconman.2020.112516.

D. Luo et al., ‘Realizing ultrahigh ZT value and efficiency of the Bi2Te3 thermoelectric module by periodic heating’, Energy Convers. Manag., vol. 296, p. 117669, Nov. 2023, doi: 10.1016/j.enconman.2023.117669.

Published

2025-09-30