Heat Transfer Enhancement in Latent Thermal Energy Storage Systems Using Metal Foam, Fins, and Nanoparticles: Review.
DOI:
https://doi.org/10.52262/9r469v56Keywords:
PCM · Fins . Nanopartical. Metal foams ·Abstract
People mostly like Latent Heat Thermal Energy Storage (LHTES) systems because they can store a lot of energy while keeping the temperature pretty much the same. Still, their performance isn't great because most phase-change materials (PCMs) don't conduct heat very well. In the last few years, a lot of research has tried to fix this problem by using three passive methods: adding fins, using open-cell metal foams, and mixing the PCM with nanoparticles. Metal foams usually make things better the most. They make a path for heat to flow through the PCM all the time, which makes the material melt much faster—sometimes by 40–80%. Copper foams usually work a little better than aluminium foams. Graphite foams, on the other hand, can speed up the melting process and make the temperature more even because they have a higher thermal conductivity (up to 25–200 W/m•K). When you lower the porosity from about 95% to 90%, the melted part also goes up by about 8–12%. However, changing the pore density from 15 to 30 PPI doesn't make a big difference. Fins also make things look better. Depending on the shape and placement, circular and spiral fins can cut the time it takes to melt by 30% to 70%. Adding small amounts of nanoparticles (usually less than 2 wt%) to PCM increases its thermal conductivity by about 10–46%. But higher concentrations can cause problems like higher viscosity and lower stability. Overall, metal foams still have the most promise, fins are a quick and cheap way to make things better, and nanoparticles can help a little bit as long as their concentration stays stable. These results also show that there are still problems to solve and that using more than one improvement method might be helpful for future LHTES designs.
References
Enescu, D., Chicco, G., Porumb, R., Seritan, G., Thermal energy storage for grid applications: current status and emerging trends, Energies, 13(2), 340, 2020.
F.A. Bhuiyan, A. Yazdani, Energy storage technologies for grid-connected and off-grid power system applications, in: 2012 IEEE Electr. Power Energy Conf., IEEE, 2012, pp. 303–310.
H. Akbari, M.C. Browne, A. Ortega, M.J. Huang, N.J. Hewitt, B. Norton, S.J. McCormack, Efficient energy storage technologies for photovoltaic systems, Sol. Energy 192 (2019) 144–168, https://doi.org/10.1016/j.solener.2018.03.052
Rahman MM, Oni AO, Gemechu E, Kumar A. Assessment of energy storage technologies: a review. Energy Convers Manag Nov. 2020;223:113295. https:// doi.org/10.1016/j.enconman.2020.113295
[ 5] Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123.
Schmit, H.; Rathgeber, C.; Hoock, P.; Hiebler, S. Critical review on measured phase transition enthalpies of salt hydrates in thecontext of solid-liquid phase change materials. Thermochim. Acta 2020, 683, 178477.
L. Yang, J. Huang, F. Zhou, Thermophysical properties and applications of nano-enhanced PCMs: an update review, Energy Convers. Manag. 214 (2020) 112876, https://doi.org/10.1016/j.enconman.2020.112876
[ 8]. Zhang, L.; Liu, W.; Wen, X.; Chen, J.; Zhao, C.; Castillo-Rodríguez, M.; Yang, L.; Zhang, X.Q.; Wang, R.; Wang, D.Y. Electrospun submicron NiO fibers combined with nanosized carbon black as reinforcement for multi-functional poly(lactic acid) composites. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105662.
[ 9]. Zhang, S.; Li, Z.; Yao, Y.; Tian, L.; Yan, Y. Heat transfer characteristics and compatibility of molten salt/ceramic porous composite phase change material. Nano Energy 2022, 100, 107476
L. Cabeza, A. Castell, C. Barreneche, A. De Gracia, A. Fern´andez, Materials used as PCM in thermal energy storage in buildings: a review, Renew. Sustain. Energy Rev. 15 (3) (2011) 1675–1695, https://doi.org/10.1016/j.rser.2010.11.018
. Li, Z.-R.; Fu, G.-T.; Fan, L.-W. Synergistic effects of nano-enhanced phase change material (NePCM) and fin shape on heat storage performance of a finned shell-and-tube unit: An experimental study. J. Energy Storage 2022, 45, 103772.
. Zhang, S.; Pu, L.; Xu, L.; Liu, R.; Li, Y. Melting performance analysis of phase change materials in different finned thermal energy storage. Appl. Therm. Eng. 2020, 176, 115425
Chieruzzi,M.;Cerritelli,G.F.;Miliozzi,A.;Kenny,J.M.Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage .Nanoscale Res. Lett. 2013,8,448.
. Ibrahim, N.I.; Al-Sulaiman, A.F.; Rahmana, S.; Yilbas, B.S.; Sahinb, A.Z. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renew. Sustain. Energy Rev. 2017, 74, 26–50.
. Siahpush, A.; O’Brien, J.; Crepeau, J. Phase change heat transfer enhancement using copper porous foam. ASMEJ. Heat Transf. 2008, 130, 082301.
Abdulateef, A.M.; Mat, S.; Abdulateef, J.; Sopian, K.; Al-Abidi, A.A. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: A review. Renew. Sustain. Energy Rev. 2018, 82, 1620–1635.
Kumar, R.; Verma, P. An experimental and numerical study on effect of longitudinal finned tube eccentric configuration on melting behaviour of lauric acid in a horizontal tube-in-shell storage unit. J. Energy Storage 2020, 30, 101396.
]A. Syuhada, D. Afandi, and S. E. Sofyan, “Convective heat transfer study on the spiral finned tube heat exchanger under various fin pitch arrangements,” IOP Conf. Ser.: Earth Environ. Sci., vol. 463, no. 1, p. 012024, Mar. 2020, doi: 10.1088/1755-1315/463/1/012024
A. H. N. Al-Mudhafar, A. F. Nowakowski, and F. C. G. A. Nicolleau, “Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins,” Energy Reports, vol. 7, pp. 120–126, May 2021, doi: 10.1016/j.egyr.2021.02.034
C. C. Kwasi-Effaha and O. Okpako, “Comprehensive review of emerging trends in thermal energy storage mechanisms, materials and applications,” Front. Energy Res., vol. 13, p. 1651471, Aug. 2025, doi: 10.3389/fenrg.2025.1651471.
[ 21 ] Aftab, W., Usman, A., Shi, J., Yuan, K., Qin, M., and Zou, R. (2021). Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ. Sci. 14 (8), 4268–4291. doi:10.1039/D1EE00527H
[ 22] Nazir, H.; Batool, M.; Osorio FJ, B.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523.
[ 23 ] Velan, S. M. (2025). Advancements in Applied Thermal Engineering: Innovations in Heat Transfer, Energy Systems, and Thermal Management Technologies. QIT Press - International Journal of Applied Thermal Engineering, 5(1).
Kwasi-Effah, C. C., Unuareokpa, O., Egware, H. O., Ighodaro, O., Obanor, A. I., Onoche, U., et al. (2024). Enhancing thermal conductivity of novel ternary nitrate salt mixtures for thermal energy storage (TES) fluid. Prog. Eng. Sci. 1 (4), 100020. doi:10.1016/j.pes.2024.100020
Seyitini, L., Belgasim, B., and Enweremadu, C. C. (2023). Solid state sensible heat storage technology for industrial applications– a review. J. Energy Storage 62, 106919. doi:10.1016/j.est.2023.106919
K. Pielichowska and K. Pielichowski, “Phase change materials for thermal energy storage,” Progress in Materials Science, vol. 65, pp. 67–123, Aug. 2014, doi: 10.1016/j.pmatsci.2014.03.005
Aljabair, S., Alesbe, I., and Ibrahim, S. H. (2023). Review on latent thermal energy storage using phase change material. J. Therm. Eng. 9 (1), 247–256. doi:10.18186/thermal.1245298.
Khyad,A.;Samrani,H.;Bargach, M.N .State of theart review of thermal energy storage systems using PCM operating with small temperature differences :Focus on Paraffin. J.Mater.Environ.Sci.2016,7,1184–1192.
Liu, K., Wu, C., Gan, H., Liu, C., and Zhao, J. (2024a). Latent heat thermal energy storage: theory and practice in performance enhancement based on heat pipes. J. Energy Storage 97, 112844. doi:10.1016/j.est.2024.112844
Trinquet F, Karim L, Lefebvre G, Royon L. Mechanical properties and melting heat transfer characteristics of shape stabilized paraffin slurry. Exp Heat Transfer 2014;27(1):1–13..
. DeGarcia, A.; Cabeza, C.F. Phase change materials and thermal energy storage for buildings. Energy Build. 2015, 103, 414–419.
. Kerskes, H.; Mette, B.; Bertsch, F.; Asenbeck, S.; Drück, H. Chemical energy storage using reversible solid/gas-reactions(CWS)—Results of the research project. Energy Procedia 2012, 30, 294–304
S. Tiari, A. Hockins, M. Mahdavi, Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations, Case Stud. Therm. Eng. 1 (25) (2021 Jun) 100999.
F. Agyenim, P. Eames, M. Smyth, Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system, Renew. Energy 36 (1) (2011 Jan 1) 108–117.
A. Sciacovelli, F. Gagliardi, V. Verda, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl. Energy 1 (137) (2015 Jan) 707–715.
A.N. Keshteli, M. Sheikholeslami, Effects of wavy wall and Y-shaped fins on solidification of PCM with dispersion of Al 2 O 3 nanoparticle, J. Therm. Anal. Calorim. 140 (1) (2020 Apr) 381–396.
Z. Ma, W.-W. Yang, F. Yuan, B. Jin, Y.-L. He, Investigation on the thermal perfor mance of a high-temperature latent heat storage system, Appl. Therm. Eng. 122 (2017) 579–592.
W.W. Wang, L.-B. Wang, Y.-L. He, Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate, Appl. Therm. Eng. 93 (2016) 50–60.
J. Wołoszyn, K. Szopa, G. Czerwinski, Enhanced heat transfer in a PCM shell-and-tube thermal energy storage system, Appl. Therm. Eng. 196 (2021) 117332, https://doi.org/ 10.1016/j.applthermaleng.2021.117332.
S. Zhang, L. Pu, L. Xu, R. Liu, and Y. Li, “Melting performance analysis of phase change materials in different finned thermal energy storage,” Applied Thermal Engineering, vol. 176, p. 115425, July 2020, doi: 10.1016/j.applthermaleng.2020.115425.
X. Liu, Y. Huang, X. Zhang, C. Zhang, B. Zhou, Investigation on charging enhancement of a latent thermal energy storage device with uneven tree-like fins, Appl. Therm. Eng. 179 (2020) 115749, https://doi.org/10.1016/j.applthermaleng.2020.115749.
P. Yan, W. Fan, Y. Yang, H. Ding, A. Arshad, and C. Wen, “Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations,” Applied Energy, vol. 327, p. 120064, Dec. 2022, doi: 10.1016/j.apenergy.2022.120064.
L. Kalapala and J. Krishna Devanuri, “Comparative analysis of solid and perforated fins for thermal enhancement of a latent heat storage unit positioned at various inclinations,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 47, no. 1, pp. 4865–4884, June 2025, doi: 10.1080/15567036.2021.1886202
D. S. Mehta, B. Vaghela, M. K. Rathod, and J. Banerjee, “Thermal performance augmentation in latent heat storage unit using spiral fin: An experimental analysis,” Journal of Energy Storage, vol. 31, p. 101776, Oct. 2020, doi: 10.1016/j.est.2020.101776
M. Gupta, V. Singh, R. Kumar,Z. Said, A review on thermophysical properties of nano fluids and heat transfer applications, Renew. Sust. Energ. Rev. 74 (2017) 638–670, https://doi.org/10.1016/j.rser.2017.02.073
M. Mehr ali, E. Johan, M. Shahi, A. Mahmoudi, Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material, Chem. Eng. J. 1 (405) (2021 Feb) 126624.
N.S. Bondareva, B. Buonomo, O. Manca, M.A. Sheremet, Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence, Int. J. Heat Mass Transf. 1 (135) (2019 Jun) 1063–1072
L. Colla, D. Ercole, L. Fedele, S. Mancin, O. Manca, S. Bobbo, Nano-phase change materials for electronics cooling applications, J. Heat Transfer 139 (5) (2017).
Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra- fine particles.
C.L. Saw, H.H. Al-Kayiem, A.L. Owolabi, Experimental investigation on the effect of PCM and nano-enhanced PCM of integrated solar collector performance, WIT Trans. Ecol. Environ. 3 (179) (2013 Dec) 899–909.
S.C. Lin, H.H. Al-Kayiem, Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage, Sol. Energy 1 (132) (2016 Jul) 267–278
M.N.M. Zubir, A. Badarudin, S. Kazi, N.M. Huang, M. Misran, E. Sadeghinezhad, M. Mehrali, N. Syuhada, S. Gharehkhani, Experimental investigation on the use of reduced graphene oxide and its hybrid complexes in improving closed conduit turbulent forced convective heat transfer, Exp. Thermal Fluid Sci. 66 (2015) 290–303, https://doi.org/ 10.1016/j.expthermflusci.2015.03.022.
S. Rostami, A. Ahmadi Nadooshan,A.Raisi,Theeffect of hybrid nano-additive consists of graphene oxide and copper oxide on rheological behavior of a mixture of water and ethylene glycol, J. Therm. Anal. Calorim. 139 (2020) 2353–2364, https://doi.org/ 10.1007/s10973-019-08569-y
A. Ebrahimi, A. Dadvand, Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source-sink pairs, Alexandria Eng. J. 54 (2015) 1003–1017, https://doi.org/10.1016/j.aej.2015.09.007
H. Waqas et al., “Enhancing the performance of thermal energy storage by adding nano-particles with paraffin phase change materials,” Nanotechnology Reviews, vol. 13, no. 1, p. 20230180, Feb. 2024, doi: 10.1515/ntrev-2023-0180
Yang, H.; Li, Y.; Yang, Y.; Chen, D.; Zhu, Y. Effective thermal conductivity of high porosity open-cell metal foams. Int. J. Heat Mass Transf. 2020, 147, 118974.
B. Buonomo, O. Manca, S. Nardini, R.E. Plomitallo, Numerical study on latent heat thermal energy storage system with PCM partially filled with aluminum foam in local thermal equilibrium, Renew. Energy 1 (195) (2022 Aug) 1368–1380.
B. Buonomo, D. Ercole, O. Manca, S. Nardini, Numerical analysis on a latent thermal energy storage system with phase change materials and aluminum foam, Heat Transfer Eng. (2019 Apr 29)
V. Joshi, M.K. Rathod, Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity, Appl. Energy 1 (253) (2019 Nov) 113621.
X. Yang, P. Wei, G. Liu, Q. Bai, Y.L. He, Performance evaluation on the gradient design of pore parameters for metal foam and pin fin-metal foam hybrid structure, Appl. Therm. Eng. 5 (175) (2020 Jul) 115416
M. Iasiello, M. Mameli, S. Filippeschi, N. Bianco, Metal foam/PCM melting evolution analysis: Orientation and morphology effects, Appl. Therm. Eng. 25 (187) (2021 Mar) 116572
Al-Maghalseh, M.; Mahkamov, K. Methods of heat transfer intensification in PCM thermal storage systems: Review paper. Renew. Sustain. Energy Rev. 2018, 92, 62–94.
Kim, J.H.; Jeong, E.; Lee, Y.S. Preparation and characterization of graphite foams. J. Ind. Eng. Chem. 2015, 32, 21–33.
M. Esapour, A. Hamzehnezhad, A. A. Rabienataj Darzi, and M. Jourabian, ―Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system,‖ Energy Conversion and Management, vol. 171, pp. 398–410, Sept. 2018, doi: 10.1016/j.enconman.2018.05.086.
Tauseef-ur-Rehman, H. M. Ali, M. M. Janjua, U. Sajjad, and W.-M. Yan, ―A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams,‖ International Journal of Heat and Mass Transfer, vol. 135, pp. 649–673, June 2019, doi: 10.1016/j.ijheatmasstransfer.2019.02.001.
]H.-R. Bahrami and M. Ghaedi, “Strategies for passive thermal management of lithium-ion batteries in microgravity: Combining PCMs, metal foams, fins, and nanoparticles,” Case Studies in Thermal Engineering, vol. 71, p. 106247, July 2025, doi: 10.1016/j.csite.2025.106247.
W.Q. Li, H. Wan, T.T. Jing, Y.B. Li, P.J. Liu, G.Q. He, F. Qin, Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: a numerical and experimental study, Appl. Therm. Eng. 146 (2019) 413–421, https://doi.org/10.1016/j.applthermaleng.2018.10.006.
X. Yang, P. Wei, X. Cui, L. Jin, Y.-L. He, Thermal response of annuli filled with metal foam for thermal energy storage: an experimental study, Appl. Energy 250 (2019) 1457–1467, https://doi.org/10.1016/j.apenergy.2019.05.096.
X. Hu, F. Zhu, X. Gong, Experimental and numerical study on the thermal behavior of phase change material infiltrated in low porosity metal foam, J. EnergyStorage26(2019) 101005, https://doi.org/10.1016/j.est.2019.101005.
G. Mishra, A. Memon, A. K. Gupta, and N. Nirmalkar, “Computational study on effect of enclosure shapes on melting characteristics of phase change material around a heated cylinder,” Case Studies in Thermal Engineering, vol. 34, p. 102032, June 2022, doi: 10.1016/j.csite.2022.102032.
D. S. Mehta, K. Solanki, M. K. Rathod, and J. Banerjee, “Influence of orientation on thermal performance of shell and tube latent heat storage unit,” Applied Thermal Engineering, vol. 157, p. 113719, July 2019, doi: 10.1016/j.applthermaleng.2019.113719.
I. Al Siyabi, S. Khanna, T. Mallick, and S. Sundaram, “An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system,” Journal of Energy Storage, vol. 23, pp. 57–68, June 2019, doi: 10.1016/j.est.2019.03.010
J. Zhao, J. Zhai, Y. Lu, and N. Liu, “Theory and experiment of contact melting of phase change materials in a rectangular cavity at different tilt angles,” International Journal of Heat and Mass Transfer, vol. 120, pp. 241–249, May 2018, doi: 10.1016/j.ijheatmasstransfer.2017.12.006.
A. K. Hasan, et al., “Experimental investigation of paraffin melting in a vertical shell-and-tube LHTES with longitudinal and circular fins,” Energy Conversion and Management, 2020.
S. Tiari, S. Qiu, and J. Mahdavi, “Melting enhancement of phase change materials with embedded heat pipes or tubes,” International Journal of Heat and Mass Transfer, vol. 86, 2015, pp. 107–118.
A. Al-Abidi, et al., “Heat transfer enhancement for PCM melting in a shell-and-tube system using fins,” Energy and Buildings, vol. 60, 2013, pp. 442–450.
M. Eeman, et al., “Effect of inlet HTF temperature on melting behavior of phase change materials in thermal energy storage modules,” Applied Energy, vol. 93, 2012, pp. 245–252.
L. Kalapala and J. K. Devanuri, “Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage – A review,” Journal of Energy Storage, vol. 20, pp. 497–519, Dec. 2018, doi: 10.1016/j.est.2018.10.024.
M. Fadl, D. Mahon, and P. C. Eames, “Thermal performance analysis of compact thermal energy storage unit-An experimental study,” International Journal of Heat and Mass Transfer, vol. 173, p. 121262, July 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121262.
S. Seddegh, X. Wang, M. M. Joybari, and F. Haghighat, “Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems,” Energy, vol. 137, pp. 69–82, Oct. 2017, doi: 10.1016/j.energy.2017.07.014
Published
Issue
Section
License
Copyright (c) 2025 Al-Furat Journal of Innovations in Mechanical and Sustainable Energy Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.